Energy Transitions and Systems

Safety considerations of Building Green Hydrogen Manufacturing and Storage System

About Speaker

Anil Relan is Vice President for Jacobs' Life Sciences, Industrial Segment including Green Hydrogen of Energy & Power Portfolio, EV & Batteries, Semiconductor, Data Centers and Specialized Manufacturing for India and Life Sciences for APAC. With significant design and construction management experience globally, Anil's 28-year tenure at Jacobs includes oversight and execution of large-scale, fast-track, life sciences and Industrial Projects. . Anil Graduated from Punjab University with a degree in Chemical **Engineering & Post Graduate Diploma is** Management

Green Hydrogen – Definition

•

" "Green Hydrogen " shall mean Hydrogen produced using renewable energy, including, but not limited to, production through electrolysis or conversion of Biomass. Renewable energy also includes such electricity generated from renewable sources which is stored in an energy storage system or banked with the grid in accordance with applicable regulations

Whereas , for Green Hydrogen produced through electrolysis :

The non biogenic greenhouse gas emissions arising from water treatment, electrolysis, gas purification and drying and compression of Hydrogen shall not be greater than 2 Kilogram of Carbon dioxide equivalent per kilogram of Hydrogen, taken as an average over last 12month period h electricity generated from Ren system or banked with the grid in accordance with applicable regulations

Green Hydrogen – Echo System

Generic Scheme for Industrial use of Green Hydrogen

Technology Options- Alkaline Electrolysis

6

Pros

- ✓ Commercially scaled
- ✓ Mature Technology
- ✓ Low Capital Cost
- ✓ Low operating cost

Cons

- High operational complexity (liquid electrolyte solution)
- Low current density
- Corrosion prone

Technology Options – Solid Oxide Electrolysis

<u>Pros</u>

✓ Highest efficiency

- ✓ Low operational complexity (solid electrolyte membrane)
- ✓ High current density

<u>Cons</u>

- Least developed at scale
- High capital cost
- High maintenance cost

Technology Options - PEM Electrolysis

Pros

- High efficiency
- ✓ Fast and precise turndown ability
- Low operational complexity (solid electrolyte membrane)
- ✓ High current density

<u>Cons</u>

- × Relatively less developed at scale
- × Moderate capital cost
- × High maintenance cost

Storage, Transportation Systems and requirements

- Hydrogen standard transport quality standards (e.g ISO 14687:2020)
- The compression system would need to be set up to the required pressure for the tube trailers used to transport the hydrogen offsite
- Capacity of tube trailer 300Kg to 1000Kg (normally 500 Kg)
- Adopt regulatory safety standards for ATEX and hazardous areas
- Hazardous Area Classification Zone 1 Group 2C
- For 100 MW plant, 2 Tons two tube type storage system at 500 bar are considered (range is 350 to 700 bar).
- Requires COMAH regulations to be complied to in UK & PESO (Petroleum and Explosive Organization, Gas Storage Rules 2016) in India

- This will allow buffer system for filling Tube Trailer for Transportation when industrial demand reduces. (Container as per ISO 1496-3)
- Blast area need to be carefully considered while doing layout. Depends upon capacity of storage tanks. For 2 Ton container 10 meter from building and 1 meter between vessels.
- Design code for vessel at 344 Kg per sq meter ASME Sec VIII Div2
- Design code for Cryogenic services API620, Double Wall Construction
- Piping Design as per ASME B31.3 and B 31.12
- Material of construction depends upon Temperature and Pressure considerations

Typical Layout

ITEM LIST				
TEM No.	EQUIPMENT DESCRIPTION	IDICATIVE SIZE		
1	ELECTROLYSER HALL			
2	ELECTRICAL & CONTROL BUILDING			
3	DEMIN WATER STORAGE TANK			
4	DEMIN WATER PUMP - SUPPLY			
5	DEMIN WATER PUMP - DISCHARGE			
6	DEMIN POLISHING PLANT			
7	COOLING WATER STORAGE TANK			
8	COOLING WATER PUMP			
9	COOLING WATER SYSTEM			
10	COOLING WATER HEAT EXCHANGER			
11	NITROGEN STORAGE TANK			
12	NITROGEN COMPRESSOR			
13	HYDROGEN STORAGE TANK			
14	HYDROGEN COMPRESSOR			
15	HYDROGEN REFUELING PUMPS			
16	TUBE TRAILER REFUELING			
17	LYE MIXING TANK			
18	LYE PUMPS			
19	PIGGING TRAP/LAUNCHER ASSEMBLY			
20	DEMIN WATER PRODUCTION PLANT			

Green Hydrogen Key Parameter – 100 MW

Capital Cost	12 crore per MW	100 MW will cost about 1200 Crore
Electrical Capacity	100 MW ± 10	Availability Greater than 85%
Hydrogen Output	2000 Kg per hour	Variation due to efficiencies of various electrolysrers
Balance of Plant	10 MW	Compression, Demin water production, Site power, Electrolyze cooling, electrical efficiency losses and auxiliary power
Electrolyzer Efficiency	53KWH/ kg	Varies between Licensor
DM Water Requirement	10 Liter per kg of Hydrogen	20 cubic meter per hour
Cooling Requirement	System with an ability to remove 25MW ±5MW from electrolyse	
Plant Life	25 years	
Turn down ration	Range of 10-100% per module	

Green Hydrogen Key Parameter – 100 MW

Cost of Green Power	Rs 3.50 per kWH	Using power banking with grid option
Selling price of Green Hydrogen	Rs 400.0 per kg minimum	For payback period of 6 years
Grey Hydrogen Carbon Credits	1 MT equal to 10 MT of CO2	Carbon credit \$ 40 per MT of CO2
Carbon Credit per kg of Hydrogen	Rs 35	
Hydrogen produced from Methane	Rs 250	4 Kgs of Methane per Kg of Hydrogen
Government subsidy being proposed	Rs 50 per Kg of Hydrogen	
Cost of 1 MW of solar plant	Rs 350 crore per MW	Interstate transmission pf power through national grid is free , only charges levied is transmiss
		19

Key Take Aways

- Every Ton of Green Hydrogen produced, 10 MT of CO2 credits
- Additional Taxes will be levied if we do not shift to Zero Carbon Footprint for our production plant.
- Cost of Green Hydrogen will come down as Electrolyzer cost comes down due to domestic production of Electrolyzer
- India is a hub of solar green energy due to lot of Sunlight available in various parts of country
- Liquid Hydrogen may be shipped in cryogenic containers as liquification temp of Hydrogen is minus 252 Deg Celsius. Huge export potential. Facilties at port for handling Liquid Hydrogen need to be set up
- No dependence on fluctuating gas prices
- Need to do electrical Grid assessment(400Kv) and water supply assessment